Enantioselective Amine-Catalyzed [4 + 2] Annulations of Allene Ketones and 2,3-Dioxopyrrolidine Derivatives: Synthesis of 4*H*-Pyran Derivatives

Shuang Zhang,[†] Yong-Chun Luo,[†] Xiu-Qin Hu,[†] Zhu-Yin Wang,[‡] Yong-Min Liang,[†] and Peng-Fei Xu^{*,†}

[†]State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China

[‡]College of Mechanics and Materials, Hohai University, Nanjing 210098, P. R. China

Supporting Information

ABSTRACT: An efficient cinchona alkaloid-derived amine catalyzed asymmetric [4 + 2] cycloaddition is successfully developed. 4*H*-Pyran fused pyrrolin-2-one products are readily obtained in moderate to high yields with good enantioselectivites by employing allene ketones and 2,3-dioxopyrrolidine derivatives as substrates.

The pyran structural motif has been widely found in a large number of bioactive molecules and natural products,¹ and pyran derivatives also serve as versatile intermediates in organic synthesis.² Therefore, many methods have been developed to afford substituted pyrans.³ Pyrrolin-2-one skeletons are featured in plenty of natural products and biologically active drug candidates.⁴ Compounds which contain the pyrrolin-2-one moiety often have significant pharmaceutical activities.⁵

Over the past decades, the phosphine promoted cycloaddition reaction of allenoate has achieved remarkable progress.⁶ Since Lu disclosed the first phosphine-catalyzed [3 + 2] cyclization between allenoates and electron-deficient olefins in 1995,7 corresponding synthetic methods have been developed rapidly in the past few years. However, it is noteworthy that the development of the amine-catalyzed cycloaddition reaction was still slow paced. As Lewis base promoters, tertiary amines could smoothly catalyze the reactions of allenoates with various substrates carrying polarized C=X bands (X = N, O, and C), such as $[2 + 2]^8$ and $[4 + 2]^9$ annulations. In 2011, Masson and Zhu reported the first enantioselective formal [2 + 2] cycloadditions of allenoates and imines catalyzed by cinchona alkaloid amide.^{8b} Subsequently, the groups of Tong, Bohan, Ye, and Shi have independently described [4 + 2] annulations of allenoates with activated olefins.^{9a-d} Recently, Cheng reported chiral tertiary aminecatalyzed asymmetric [4 + 2] cycloadditions of allenoates with 2-olefinic benzofuran-3-ones to afford dihydropyran fused benzofuran derivatives.^{9g}

While allenoates have been extensively used, the corresponding allene ketones have only been reported in a few cases.¹⁰ In 2007, the Wallace group have demonstrated the first phosphine-catalyzed [3 + 2] cycloadditions of allene ketones in good yield and diastereoselectivity.^{10b} In 2009, the Loh group introduced the silicon group at the α -position of allene ketones, which was the key to obtaining cross-cyclized [3 + 2]products.^{10c} Recently, Antonchick and Waldmann reported a phosphine-catalyzed [3 + 2] annulation of isoquinolinium methylides with allene ketones.^{10g} Lu's group developed a novel phosphine-catalyzed [4 + 2] annulation employing allene ketones as C₂ synthons, which was the first time that an allene ketone was used in a asymmetric phosphine-catalyzed annulation reaction.^{10h} To the best of our knowledge, there is no report on the asymmetric amine-catalyzed annulation using allene ketones to synthesize chiral pyran skeletons. We envisioned that a [4 + 2] annulation reaction could be developed by employing allene ketones and activated alkenes via asymmetric amine catalysis. In an effort to continue our studies of the synthesis of chiral heterocyclic compounds,¹¹ herein we report a chiral amine-catalyzed enantioselective [4 + 2] cycloaddition between allene ketones and 2,3-dioxopyrrolidine derivatives.¹²

We initiated our investigations using (E)-1-benzyl-4benzylidenepyrrolidine-2,3-dione (1a) and 1-phenylbuta-2,3dien-1-one (2a) with different amine catalysts and solvents (Table 1). In the presence of C1, the desired [4 + 2] annulation occurred smoothly to yield 3a in 76% yield with 95% *ee* (entry 1). Then, a number of widely used cinchona alkaloid derived catalysts C2-C15 were tested (entries 2–15), and we were

Received:
 April 29, 2015

 Published:
 June 23, 2015

Table 1. Screening for the [4 + 2] Cycloaddition^{*a*}

^{*a*}The reactions were conducted with 0.2 mmol of 1a, 0.3 mmol of 2a, and 10 mol % catalyst in 2.0 mL of solvent at 40 °C. ^{*b*}Isolated yields. ^{*c*}Determined by chiral HPLC analysis. ^{*d*}5 mol % catalyst was added..

delighted to find that all of the amine catalysts worked well for the [4 + 2] cycloaddition. C2 could give products in 88% yield and 97% *ee* (entry 2). Silicon group substituted catalysts (C3– C7) gave no better results than C2. Under the catalysis of C5, the *ee* value was not improved, but the yield of 3a was lower, which indicated that big O-substitution could not improve enantioselectivity but decrease the reactivity of the catalyst. As expected, the enantiomer of 4a was formed when the chiralityinversed catalysts (C10, C11, and C14) were employed, although the enantioselectivities were lower. We were surprised to find that β -ICD (C15) gave a higher yield but a lower *ee* value. Next, a quick solvent screening identified toluene as the best solvent (entries 16–18). At last, we decreased the amount of C2 to 5 mol % (entry 19) and found that the yield was significantly reduced but that the *ee* value was nearly unchanged.

Having established the optimal reaction conditions, we next surveyed the substrate scope of the reaction by varying the structures of 2,3-dioxopyrrolidine derivatives 1 and allene ketones 2. As exhibited in Table 2, the reaction was applicable to a wide range of 2,3-dioxopyrrolidine derivatives bearing different aromatic groups (entries 2-14). In most cases, the corresponding products were obtained in moderate to good yield (59–90%) with good enatioselectivities (80-95% ee). The substituents on the phenyl rings affected the yields apparently, for example, *ortho*-Me, *ortho*-F, and 2-naphthyl-containing substrates gave lower yields (entries 2, 12 and 14). Subsequently, different allene ketones were employed in the reaction (entries 15-20), and good results were obtained.

7289

	N-Bn +	R ² C2 (10 mol%) toluene, 40 °	$\frac{6}{C}$ $\stackrel{R^2}{\longrightarrow}$ O	O N-Bn	
	Ř ¹ 1	2		R ¹ 3	
Entry	\mathbb{R}^1	R^2	t (h)	3 , Yield $(\%)^{b}$	$ee (\%)^c$
1	Ph	Ph	12	3a , 88	97
2	$2-MeC_6H_4$	Ph	24	3b , 62	89
3	$3-MeC_6H_4$	Ph	12	3c , 86	94
4	$4-MeC_6H_4$	Ph	24	3d , 88	95
5	$2-BrC_6H_4$	Ph	17	3e , 84	80
6	$3-BrC_6H_4$	Ph	12	3f , 90	92
7	$4-BrC_6H_4$	Ph	17	3g , 82	92
8	$2-ClC_6H_4$	Ph	16	3h , 89	86
9	$3-ClC_6H_4$	Ph	12	3i , 79	91
10	$4-ClC_6H_4$	Ph	18	3j , 78	91
11	3,4-diClC ₆ H ₃	Ph	12	3k , 77	89
12	$2-FC_6H_4$	Ph	12	31 , 59	95
13	$4-CNC_6H_4$	Ph	15	3m , 81	89
14	had the second sec	Ph	53	3n , 63	95
15	Ph	3-MeC ₆ H ₄	12	30 , 79	93
16	Ph	4-MeC ₆ H ₄	12	3p , 89	93
17	Ph	$3-BrC_6H_4$	12	3q , 87	94
18	Ph	$4-BrC_6H_4$	12	3r , 86	91
19	Ph	$4-ClC_6H_4$	12	3s , 89	95
20	Ph	3,4-diClC ₆ H ₃	12	3t , 88	89
21	Ph	<i>n</i> -C ₆ H ₁₃	72	23	-
22	Ph	OBn	48	8	-

Table 2. Substrate Scope of the C2-Catalyzed Asymmetric [4 + 2] Cyclization of 1 and 2^{a}

^aThe reactions were conducted with 0.2 mmol of 1, 0.3 mmol of 2, and 10 mol % C2 in 2.0 mL of toluene at 40 °C. ^bIsolated yields. ^cDetermined by chiral HPLC analysis.

Then, an alkyl-substituted allene ketone was tested, but no good result was achieved (entry 21). Lastly, an allenoate substrate was also tested in this reaction, which only gave product in 8% yield (entry 22). We believe that this result may be due to the different reactivities between allene ketone and allenoate substrates. The absolute configuration of products **3** was unequivocally assigned as R by X-ray diffraction of **3a**.¹³

On the basis of the above experimental results and the previous mechanistic investigations,¹⁴ a plausible mechanism has been proposed as shown in Scheme 1. Addition of the C2 to the allene ketone 2a will generate zwitterionic intermediates A1 and A2. Then, the activated olefin 1a, which is stabilized by the $\pi-\pi$ stacking between the phenyl ring and the quinolone moiety, is attacked by the intermediate A1 from the *Si*-face to obtain the intermediate C. Subsequently, the intermediate C undergoes a ring-closed reaction, and the elimination of catalyst C2 affords the product 3a', which then isomerizes to form the final product 3a.

In summary, we have developed an efficient amine catalyzed [4 + 2] annulation between allene ketones and 2,3-

dioxopyrrolidine derivatives. By utilizing cinchona alkaloid derived catalysts, 4*H*-pyran derivatives could be obtained in moderate to high yields with good enantioselectivities. To the best of our knowledge, this is the first asymmetric amine-catalyzed annulation employing allene ketones as substrates. This method provides an efficient way to construct 4*H*-pyran skeletons, which are widely found in natural products.

EXPERIMENTAL SECTION

General Information. All reactions were carried out in glassware with magnetic stirring. Purification of reaction products was carried out by flash chromatography using silica gel at high pressure. ¹H NMR and ¹³C NMR spectra were recorded using CDCl₃ as the solvent and TMS as an internal standard. The peak patterns of ¹H NMR are indicated as follows: s, singlet; d, doublet; t, triplet; dd, doublet of doublet; and m, multiplet. The coupling constants, *J*, are reported in hertz (Hz). Data for ¹³C NMR are reported in terms of chemical shift and multiplicity. High resolution mass spectra (HRMS) were recorded using ESI (FT-ICR). IR spectra were recorded by a FT-IR instrument and are reported in wavenumbers (cm⁻¹). HPLC analyses were conducted on the ID column and eluting with *n*-hexane/CH₂Cl₂/

Scheme 1. Proposed Mechanism of the Reaction of 1a and 2a

MeOH. 2,3-Dioxopyrrolidine derivative 1,¹² allene ketone 2,^{10b} and catalyst $C2^{15}$ were synthesized according to the previously reported methods.

General Procedure for the Synthesis of 3. To a suspension of compound 1 (0.2 mmol) in toluene (2 mL), were sequentially added catalyst C2 (0.02 mmol) and compound 2 (0.3 mmol), and the mixture was then stirred and heated with an oil bath at 40 °C. The reaction was monitored by TLC analysis, and when the reaction was completed, the mixture was subjected directly to flash column chromatography on silica gel (200–300 mesh, petroleum ether/ethyl acetate 3:1) to yield the corresponding products.

(*R*)-6-Benzyl-2-(2-oxo-2-phenylethyl)-4-phenyl-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3a**). Red solid; 88% yield (74 mg); 97% ee; $[\alpha]_D^{20} = 23.0$; (*c* 1.0, CHCl₃); mp 74.4–75.2 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.59–7.44 (m, 3H), 7.31–7.16 (m, 10H), 4.86 (d, *J* = 3.2 Hz, 1H), 4.81 (d, *J* = 15.2 Hz, 1H), 4.32 (d, *J* = 2.4 Hz, 1H), 4.28 (d, *J* = 15.2 Hz, 1H), 3.95 (d, *J* = 16.8 Hz, 1H), 3.89 (d, *J* = 16.8 Hz, 1H), 3.56 (d, *J* = 19.2 Hz, 1H), 3.36 (d, *J* = 18.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.7$, 163.8, 145.9, 142.8, 141.7, 136.6, 136.1, 133.3, 128.8, 128.6, 128.6, 128.2, 127.9, 127.7, 127.5, 127.3, 123.6, 103.8, 47.2, 46.2, 42.7, 38.8 ppm. IR (KBr): ν 3358, 3061, 2919, 1692, 1598, 1451, 1339, 1242, 1203, 1144, 992, 756, 736, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₃NO₃ [M + Na]⁺, 444.1570; found, 444.1565. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/ min, $\lambda = 245$ nm, $t_{maigr} = 7.8$ min, $t_{minor} = 9.4$ min.

(*R*)-6-Benzyl-2-(2⁻oxo-2-phenylethyl)-4-(o-tolyl)-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3b**). Yellow solid; 62% yield (54 mg); 89% ee; $[\alpha]_D^{20} = 33.0$; (c 1.0, CHCl₃); mp 56.9–58.7 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.60–7.45 (m, 3H), 7.32–7.10 (m, 9H), 4.81 (d, J = 3.6 Hz, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.62 (d, J = 2.4 Hz, 1H), 4.33 (d, J = 15.2 Hz, 1H), 3.96 (d, J =16.4 Hz, 1H), 3.87 (d, J = 16.8 Hz, 1H), 3.58 (dd, J = 18.4 Hz, J = 0.8Hz, 1H), 3.41 (d, J = 18.0 Hz, 1H), 2.29 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.8$, 163.9, 145.9, 142.3, 140.7, 136.7, 136.2, 134.6, 133.4, 130.5, 129.1, 128.7, 128.6, 128.3, 127.9, 127.6, 127.0, 126.8, 123.5, 103.6, 47.3, 46.3, 42.7, 34.8, 19.3 ppm. IR (KBr): ν 3370, 3062, 2919, 1694, 1598, 1451, 1339, 1241, 1145, 992, 735, 701 cm⁻¹. ESI-HRMS: calcd for C₂₉H₂₅NO₃ [M + Na]⁺, 458.1727; found, 458.1721. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 55/44/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 20.0 min, t_{minor} = 25.1 min.

(R)-6-Benzyl-2-(2-oxo-2-phenylethyl)-4-(m-tolyl)-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (3c). Orange solid; 86% yield (75 mg); 94% ee; $[\alpha]_{D}^{20} = 22.0$; (c 1.0, CHCl₃); mp 50.8–53.1 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.00-7.98 (m, 2H), 7.60-7.46 (m, 3H), 7.32–7.16 (m, 6H), 7.05–6.97 (m, 3H), 4.84 (s, 1H), 4.83 (d, J = 14.4 Hz, 1H), 4.29 (d, J = 2.0 Hz, 1H), 4.29 (d, J = 14.8 Hz, 1H), 3.97 (d, J = 16.8 Hz, 1H), 3.89 (d, J = 16.8 Hz, 1H), 3.56 (d, J = 18.4 Hz, 1H), 3.37 (d, J = 18.4 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, $CDCl_3$): $\delta = 194.7$, 163.9, 145.8, 142.8, 141.7, 138.6, 136.7, 136.1, 133.4, 128.7, 128.6, 128.5, 128.3, 128.1, 127.9, 127.6, 124.8, 123.8, 103.9, 47.3, 46.3, 42.8, 38.8, 21.3 ppm. IR (KBr): v 3362, 3059, 2921, 2371, 1693, 1604, 1450, 1242, 1197, 1140, 1029, 995, 737, 701 cm^{-1} . ESI-HRMS: calcd for $C_{29}H_{25}NO_3$ [M + Na]⁺, 458.1727; found, 458.1722. HPLC analysis: Chiralpak ID, n-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 12.2 min, t_{minor} = 16.4 min.

(*R*)-6-Benzyl-2-(2-oxo-2-phenylethyl)-4-(p-tolyl)-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3d**). Red solid; 88% yield (77 mg); 95% ee; $[\alpha]_D^{20} = 26.0$; (*c* 1.0, CHCl₃); mp 55.6–56.8 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.60–7.46 (m, 3H), 7.31–7.06 (m, 9H), 4.84–4.80 (m, 2H), 4.31–4.28 (m, 2H), 3.95 (d, *J* = 16.8 Hz, 1H), 3.89 (d, *J* = 16.8 Hz, 1H), 3.55 (d, *J* = 18.4 Hz, 1H), 3.37 (d, *J* = 18.0 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.8$, 163.9, 145.8, 141.7, 139.9, 137.0, 136.7, 136.2, 133.4, 129.5, 128.7, 128.6, 128.3, 128.0, 127.6, 127.6, 123.9, 104.0, 47.3, 46.3, 42.8, 38.4, 21.0 ppm. IR (KBr): ν 3364, 3059, 2921, 2373, 1693, 1662, 1450, 1241, 1203, 1143, 1031, 994, 754, 702 cm⁻¹. ESI-HRMS: calcd for C₂₉H₂₅NO₃ [M + Na]⁺, 458.1727; found, 458.1722. HPLC analysis:

The Journal of Organic Chemistry

Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 45/54/1, flow rate 1.0 mL/ min, λ = 245 nm, t_{major} = 10.2 min, t_{minor} = 12.9 min.

(5)-6-Benzyl-4-(2-bromophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3e**). Yellow solid; 84% yield (84 mg); 80% ee; $[\alpha]_D^{20} = -7.0$; (c 1.0, CHCl₃); mp 61.6–62.6 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00-7.98$ (m, 2H), 7.60–7.41 (m, SH), 7.33–7.06 (m, 7H), 4.92 (s, 1H), 4.85 (d, *J* = 3.2 Hz, 1H), 4.77 (d, *J* = 15.2 Hz, 1H), 4.36 (d, *J* = 14.8 Hz, 1H), 3.98 (d, *J* = 16.8 Hz, 1H), 3.93 (d, *J* = 16.8 Hz, 1H), 3.77 (d, *J* = 18.8 Hz, 1H), 3.46 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 194.6, 163.6, 146.8, 142.1, 141.6, 136.7, 136.1, 133.4, 132.5, 130.9, 128.8, 128.6, 128.6, 128.3, 128.3, 127.8, 127.5, 122.8, 122.7, 102.7, 47.4, 46.2, 42.7, 37.7 ppm. IR (KBr): ν 3373, 3060, 2919, 2371, 1688, 1597, 1450, 1339, 1241, 1273, 1202, 1144, 1025, 992, 737, 702 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂BrNO₃ [M +Na]⁺, 522.0675; found, 522.0669. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 60/39/1, flow rate 1.0 mL/min, $\lambda =$ 245 nm, $t_{major} =$ 12.1 min, $t_{minor} =$ 15.0 min.

(*R*)-6-Benzyl-4-(3-bromophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3f**). Orange solid; 90% yield (90 mg); 92% ee; $[\alpha]_D^{20} = 27.0$; (*c* 1.0, CHCl₃); mp 61.5–63.5 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.60–7.46 (m, 3H), 7.37–7.14 (m, 9H), 4.84–4.81 (m, 2H), 4.33–4.28 (m, 2H), 3.97 (d, *J* = 16.4 Hz, 1H), 3.90 (d, *J* = 16.8 Hz, 1H), 3.57 (d, *J* = 18.4 Hz, 1H), 3.37 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 194.6, 163.6, 146.4, 145.1, 142.0, 136.6, 136.1, 133.5, 130.8, 130.5, 130.5, 128.7, 128.7, 128.3, 127.9, 127.6, 126.5, 123.0, 122.8, 103.2, 47.1, 46.3, 42.7, 38.6 ppm. IR (KBr): ν 3370, 3060, 2921, 2371, 1691, 1594, 1450, 1242, 1202, 1144, 1092, 1030, 785, 737, 696 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂BrNO₃ [M + Na]⁺, 522.0675; found, 522.0669. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 13.1 min, t_{minor} = 21.0 min.

(*R*)-6-Benzyl-4-(4-bromophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3g**). Orange solid; 82% yield (82 mg). 92% ee; $[\alpha]_D^{20} = 51.0$; (*c* 1.0, CHCl₃); mp 59.2–61.0 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.61–7.58 (m, 1H), 7.50–7.42 (m, 4H), 7.32–7.08 (m, 7H), 4.83–4.79 (m, 2H), 4.34–4.30 (m, 2H), 3.93 (s, 2H), 3.56 (d, *J* = 18.0 Hz, 1H), 3.35 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.7$, 163.7, 146.3, 141.9, 141.8, 136.6, 136.1, 133.5, 132.0, 129.5, 128.7, 128.7, 128.3, 128.0, 127.7, 123.0, 121.3, 103.3, 47.2, 46.3, 42.7, 38.4 ppm. IR (KBr): ν 3365, 2921, 2373, 1693, 1485, 1450, 1242, 1203, 1143, 1010, 754, 697 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂BrNO₃ [M + Na]⁺, 522.0675; found, 522.0669. HPLC analysis: Chiralpak ID, *n*-hexane/ CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 13.7 min, t_{minor} = 22.1 min.

(5)-6-Benzyl-4-(2-chlorophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3h**). Yellow solid; 89% yield (81 mg); 86% ee; $[\alpha]_D^{20} = -5.0$; (c 1.0, CHCl₃); mp 86.0–87.7 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00-7.98$ (m, 2H), 7.60–7.41 (m, 4H), 7.31–7.14 (m, 8H), 4.93 (d, J = 2.8 Hz, 1H), 4.84 (d, J = 3.6 Hz, 1H), 4.77 (d, J = 15.2 Hz, 1H), 4.36 (d, J = 15.2 Hz, 1H), 3.98 (d, J = 16.8 Hz, 1H), 3.74 (d, J = 18.8 Hz, 1H), 3.45 (d, J = 18.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.7$, 163.6, 147.0, 142.2, 139.9, 136.7, 136.1, 133.4, 132.3, 130.6, 129.2, 128.7, 128.6, 128.4, 128.3, 127.9, 127.7, 127.6, 122.8, 102.5, 47.4, 46.3, 42.7, 34.9 ppm. IR (KBr): ν 3372, 3062, 2917, 2371, 1695, 1597, 1450, 1339, 1242, 1202, 992, 756, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂ClNO₃ [M + Na]⁺, 478.1180; found, 478.1175. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 60/39/1, flow rate 1.0 mL/min, $\lambda = 245$ nm, $t_{major} = 11.4$ min, $t_{minor} = 14.1$ min.

(*R*)-6-Benzyl-4-(3-chlorophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3i**). Orange solid; 79% yield (72 mg); 91% *ee*; $[\alpha]_D^{20} = 26.0$; (*c* 1.0, CHCl₃); mp 60.1–62.5 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.99-7.97$ (m, 2H), 7.61–7.46 (m, 3H), 7.32–7.09 (m, 9H), 4.84 (s, 1H), 4.83 (d, *J* = 15.2 Hz, 1H), 4.32 (d, *J* = 2.8 Hz, 1H), 4.31 (d, *J* = 15.2 Hz, 1H), 3.97 (d, *J* = 16.4 Hz, 1H), 3.91 (d, *J* = 16.4 Hz, 1H), 3.57 (d, *J* = 18.8 Hz, 1H), 3.37 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.6$, 163.6, 146.4, 144.8, 142.0, 136.6, 136.1, 134.7, 133.5, 130.1, 128.7, 128.7, 128.3, 127.9, 127.9, 127.6, 127.6, 126.0, 122.8, 103.2, 47.1, 46.3, 42.7, 38.6 ppm. IR (KBr): ν 3363, 3061, 2920, 2372, 1694, 1595, 1450, 1339, 1243, 1203, 995, 756, 737, 696 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂ClNO₃ [M + Na]⁺, 478.1180; found, 478.1175. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 60/39/1, flow rate 1.0 mL/min, λ = 245 nm, t_{maior} = 11.6 min, t_{minor} = 17.8 min.

(R)-6-Benzyl-4-(4-chlorophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (3j). Orange solid; 78% yield (71 mg); 91% ee; $[\alpha]_{D}^{20}$ = 42.0; (c 1.0, CHCl₃); mp 54.1–55.4 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.98–7.96 (m, 2H), 7.60–7.57 (m, 1H), 7.49-7.45 (m, 2H), 7.32-7.23 (m, 5H), 7.19-7.13 (m, 4H), 4.83 (d, J = 3.2 Hz, 1H), 4.79 (d, J = 14.8 Hz, 1H), 4.32 (d, J = 14.8 Hz, 1H), 4.32 (d, J = 2.0 Hz, 1H), 3.93 (s, 2H), 3.70 (d, J = 18.4 Hz, 1H), 3.35 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 194.6, 163.6, 146.2, 141.8, 141.3, 136.5, 136.1, 133.4, 133.1, 129.1, 128.9, 128.7, 128.6, 128.2, 127.9, 127.6, 123.1, 103.4, 47.1, 46.2, 42.7, 38.2 ppm. IR (KBr): v 3367, 3061, 2919, 2371, 1692, 1597, 1489, 1450, 1409, 1243, 1203, 1144, 1089, 1015, 832, 737, 700 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂ClNO₃ [M + Na]⁺, 478.1180; found, 478.1175. HPLC analysis: Chiralpak ID, n-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 13.6 min, t_{minor} = 21.5 min.

(R)-6-Benzyl-4-(3,4-dichlorophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3k**). Red solid; 77% yield (75 mg); 89% ee; $[\alpha]_{20}^{20} = 38.0$; (c 1.0, CHCl₃); mp 54.4–56.4 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.98-7.96$ (m, 2H), 7.59–7.07 (m, 11H), 4.81 (d, J = 15.2 Hz, 2H), 4.34 (d, J = 15.2 Hz, 2H), 3.94 (s, 2H), 3.58 (d, J = 18.0 Hz, 1H), 3.36 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.5$, 163.5, 146.7, 143.0, 142.1, 136.5, 136.0, 133.5, 132.9, 131.5, 130.8, 129.7, 128.7, 128.7, 128.3, 128.0, 127.7, 127.2, 122.4, 102.9, 47.1, 46.3, 42.7, 38.1 ppm. IR (KBr): ν 3370, 2923, 2368, 1690, 1597, 1466, 1450, 1243, 1223, 1144, 1030, 738, 700 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₁Cl₂NO₃ [M + Na]⁺, 512.0791; found, 512.0785. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 45/54/1, flow rate 1.0 mL/min, $\lambda = 245$ nm, $t_{major} = 10.3$ min, $t_{minor} = 18.1$ min.

(S)-6-Benzyl-4-(2-fluorophenyl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3**). White solid; 59% yield (S2 mg); 95% ee; $[\alpha]_{D}^{20} = 22.0$; (c 1.0, CHCl₃); mp 150.9–151.9 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00-7.98$ (m, 2H), 7.61–7.36 (m, 3H), 7.34–7.01 (m, 8H), 6.98–6.96 (m, 1H), 4.83 (d, J = 3.2 Hz, 1H), 4.78 (d, J = 14.8 Hz, 1H), 4.75 (s, 1H), 4.35 (d, J = 14.8 Hz, 1H), 4.48 (d, J = 16.8 Hz, 1H), 3.93 (d, J = 16.8 Hz, 1H), 3.68 (d, J = 18.4Hz, 1H), 3.45 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 194.7, 163.7, 160.8, 158.4, 147.2, 142.2, 136.7, 136.2, 133.4, 130.1, 130.1, 129.4, 129.3, 128.8, 128.7, 128.7, 128.7, 128.3, 127.9, 127.6, 124.9, 124.8, 122.7, 115.2, 114.9, 101.9, 47.4, 47.4, 46.3, 42.7, 30.9, 30.8 ppm. IR (KBr): ν 3370, 3062, 2917, 1695, 1487, 1452, 1340, 1243, 1198, 1094, 992, 758, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂FNO₃ [M + Na]⁺, 462.1476; found, 462.1472. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 55/44/1, flow rate 1.0 mL/ min, $\lambda = 245$ nm, $t_{major} = 16.4$ min, $t_{minor} = 19.9$ min.

(*R*)-4-(6-Benzyl-7-oxo-2-(2-oxo-2-phenylethyl)-4,5,6,7-tetrahydropyrano[2,3-c]pyrrol-4-yl)benzonitrile (**3m**). Yellow solid; 81% yield (74 mg); 89% ee; $[\alpha]_{20}^{20}$ = 59.0; (c 1.0, CHCl₃); mp 61.8–64.3 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.98–7.96 (m, 2H), 7.62–7.47 (m, 5H), 7.37–7.17 (m, 7H), 4.85 (d, *J* = 3.6 Hz, 1H), 4.78 (d, *J* = 14.8 Hz, 1H), 4.42 (d, *J* = 2.4 Hz, 1H), 4.35 (d, *J* = 14.8, 1H), 3.97 (d, *J* = 17.2 Hz, 1H), 3.92 (d, *J* = 16.8 Hz, 1H), 3.59 (d, *J* = 18.8 Hz, 1H), 3.33 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.5, 163.4, 147.8, 146.8, 142.3, 136.4, 136.0, 133.5, 132.7, 128.7, 128.6, 128.2, 127.9, 127.7, 122.0, 118.4, 111.3, 102.6, 47.0, 46.3, 42.6, 39.0 ppm. IR (KBr): ν 3356, 3061, 2920, 2228, 1692, 1606, 1450, 1339, 1243, 1204, 1144, 992, 847, 737, 701 cm⁻¹. ESI-HRMS: calcd for C₂₉H₂₂N₂O₃ [M + Na]⁺, 469.1523; found, 469.1517. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 60/39/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 20.4 min, t_{minor} = 34.6 min.

(R)-6-Benzyl-4-(naphthalen-2-yl)-2-(2-oxo-2-phenylethyl)-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3n**). Orange solid; 63% yield (59 mg); 95% ee; $[\alpha]_{D}^{20} = 42.0$; (c 1.0, CHCl₃); mp 55.4–57.6 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.01–7.99 (m, 2H), 7.81–7.75 (m, 3H), 7.61–7.57 (m, 2H), 7.50–7.44 (m, 4H), 7.37–7.15 (m, 6H), 4.93 (d, *J* = 3.2 Hz, 1H), 4.82 (d, *J* = 15.2 Hz, 1H), 4.50 (s, 1H), 4.26 (d, *J* = 15.2 Hz, 1H), 3.99 (d, *J* = 16.4 Hz, 1H), 3.93 (d, *J* = 16.4 Hz, 1H), 3.59 (d, *J* = 18.4 Hz, 1H), 3.34 (d, *J* = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 194.7, 163.9, 146.2, 141.9, 140.1, 136.6, 136.2, 133.4, 133.3, 132.6, 128.8, 128.7, 128.4, 128.0, 127.7, 127.6, 127.6, 126.4, 126.3, 126.0, 125.8, 123.6, 103.8, 47.3, 46.3, 42.8, 39.1 ppm. IR (KBr): ν 3368, 3057, 2922, 2375, 1691, 1598, 1450, 1242, 1143, 1031, 995, 749, 738, 702 cm⁻¹. ESI-HRMS: calcd for C₃₂H₂₅NO₃ [M + Na]⁺, 494.1727; found, 494.1730. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/ min, λ = 245 nm, t_{maior} = 14.8 min, t_{minor} = 21.3 min.

(*R*)-6-Benzyl-2-(2²-oxo-2-(*m*-tolyl)ethyl)-4-phenyl-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3o**). Red solid; 79% yield (69 mg); 93% ee; $[\alpha]_{D}^{30} = 12.0$; (*c* 1.0, CHCl₃); mp 55.2–57.6 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.79-7.77$ (m, 2H), 7.40–7.17 (m, 12H), 4.85 (d, *J* = 3.2 Hz, 1H), 4.82 (d, *J* = 15.2 Hz, 1H), 4.32 (d, *J* = 1.6 Hz, 1H), 4.29 (d, *J* = 14.8 Hz, 1H), 3.94 (d, *J* = 16.8 Hz, 1H), 3.88 (d, *J* = 16.8 Hz, 1H), 3.56 (d, *J* = 18.4 Hz, 1H), 3.36 (d, *J* = 18.0 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.9$, 163.8, 146.0, 142.8, 141.7, 138.4, 136.7, 136.2, 134.1, 128.8, 128.6, 128.5, 127.9, 127.7, 127.5, 127.3, 125.5, 123.6, 103.7, 47.2, 46.2, 42.8, 38.8, 21.3 ppm. IR (KBr): ν 3361, 3059, 2920, 1691, 1603, 1452, 1240, 1158, 1090, 1038, 995, 735, 702 cm⁻¹. ESI-HRMS: calcd for C₂₉H₂₅NO₃ [M + Na]⁺, 458.1727; found, 458.1722. HPLC analysis: Chiralpak ID, *n*hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, *t*_{maior} = 13.1 min, *t*_{minor} = 16.3 min.

nm, $t_{major} = 13.1$ min, $t_{minor} = 16.3$ min. (*R*)-6-Benzyl-2-(2- ∞ xo-2-(*p*-tolyl)ethyl)-4-phenyl-5,6-dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3p**). Red solid; 89% yield (77 mg); 93% ee; $[\alpha]_{D}^{20} = 19.0$; (*c* 1.0, CHCl₃); mp 62.5–63.5 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.89-7.87$ (m, 2H), 7.31–7.16 (m, 12H), 4.85 (d, *J* = 2.8 Hz, 1H), 4.81 (d, *J* = 14.8 Hz, 1H), 4.32 (s, 1H), 4.29 (d, *J* = 15.2 Hz, 1H), 3.92 (d, *J* = 16.8 Hz, 1H), 3.86 (d, *J* = 16.8 Hz, 1H), 3.56 (d, *J* = 18.4 Hz, 1H), 3.36 (d, *J* = 18.4 Hz, 1H), 2.40 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 194.3$, 163.8, 146.1, 144.2, 142.8, 141.7, 136.7, 133.7, 129.3, 128.8, 128.6, 128.4, 127.9, 127.7, 127.5, 127.2, 123.6, 103.6, 47.2, 46.2, 42.6, 38.8, 21.6 ppm. IR (KBr): ν 3350, 3029, 2920, 1693, 1606, 1452, 1242, 1201, 1181, 995, 814, 735, 702 cm⁻¹. ESI-HRMS: calcd for C₂₉H₂₅NO₃ [M + Na]⁺, 458.1727; found, 458.1722. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 52/47/1, flow rate 1.0 mL/min, $\lambda = 245$ nm, $t_{major} = 16.0$ min, $t_{minor} =$ 21.6 min.

(R)-6-Benzyl-2-(2-(3-bromophenyl)-2-oxoethyl)-4-phenyl-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (3q). Orange solid; 87% yield (87 mg); 94% ee; $[\alpha]_D^{20} = 27.0$; (c 1.0, CHCl₃); mp 62.4–64.7 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (s, 1H), 7.90 (d, J = 7.6 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.37-7.17 (m, 11H), 4.86 (d, J = 3.2 Hz, 1H), 4.81 (d, J = 15.2 Hz, 1H), 4.32 (d, J = 1.6 Hz, 1H), 4.29 (d, J = 15.2 Hz, 1H), 3.92 (d, J = 16.8 Hz, 1H), 3.86 (d, J = 16.8 Hz, 1H), 3.56 (d, J = 18.4 Hz, 1H), 3.36 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ = 193.4, 163.7, 145.5, 142.6, 141.7, 137.8, 136.6, 136.2, 131.2, 130.2, 128.8, 128.6, 127.9, 127.7, 127.6, 127.3, 126.9, 123.6, 122.9, 104.1, 47.2, 46.2, 42.8, 38.8 ppm. IR (KBr): v 3370, 3062, 2918, 2372, 1692, 1452, 1420, 1242, 1201, 1143, 994, 736, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂BrNO₃ [M + Na]⁺, 522.0675; found, 522.0668. HPLC analysis: Chiralpak ID, n-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, $\lambda = 245$ nm, $t_{maior} = 13.9$ min, $t_{minor} = 13.9$ minor 17.4 min.

(*R*)-6-Benzyl-2-(2-(4-bromophenyl)-2-oxoethyl)-4-phenyl-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3r**). Yellow solid; 86% yield (86 mg); 91% *ee*; $[\alpha]_D^{20} = 27.0$; (*c* 1.0, CHCl₃); mp 67.6–70.0 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.84$ (d, J = 8.8 Hz, 2H), 7.60 (d, J =8.4 Hz, 2H), 7.32–7.17 (m, 10H), 4.85 (d, J = 3.2 Hz, 1H), 4.80 (d, J =15.2 Hz, 1H), 4.32 (s, 1H), 4.29 (d, J = 15.6 Hz, 1H), 3.91 (d, J =16.8 Hz, 1H), 3.85 (d, J = 16.8 Hz, 1H), 3.56 (d, J = 18.4 Hz, 1H), 3.36 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.7$, 163.7, 145.5, 142.6, 141.6, 136.6, 134.8, 131.9, 129.8, 128.8, 128.6, 128.5, 127.9, 127.7, 127.5, 127.3, 123.6, 104.0, 47.2, 46.2, 42.7, 38.8 ppm. IR (KBr): ν 3367, 3061, 2917, 2371, 1692, 1585, 1452, 1396, 1242, 1203, 1143, 1072, 989, 736, 702 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂BrNO₃ [M + Na]⁺, 522.0675; found, 522.0669. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 14.1 min, t_{minor} = 16.8 min.

(*R*)-6-Benzyl-2-(2-(4-chlorophenyl)-2-oxoethyl)-4-phenyl-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (**3s**). Orange solid; 89% yield (81 mg); 95% ee; $[\alpha]_{D}^{20} = 27.0$; (c 1.0, CHCl₃); mp 63.3-65.3 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.92$ (d, J = 8.4 Hz, 2H), 7.44 (d, J =8.4 Hz, 2H), 7.32-7.17 (m, 10H), 4.86 (d, J = 3.2 Hz, 1H), 4.81 (d, J =15.2 Hz, 1H), 4.32 (s, 1H), 4.29 (d, J = 15.2 Hz, 1H), 3.92 (d, J =16.8 Hz, 1H), 3.86 (d, J = 16.4 Hz, 1H), 3.56 (d, J = 18.4 Hz, 1H), 3.37 (d, J = 18.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.6$, 163.7, 145.6, 142.7, 141.7, 139.8, 136.6, 134.4, 129.7, 128.9, 128.8, 128.6, 127.9, 127.7, 127.6, 127.3, 123.6, 104.0, 47.2, 46.2, 42.7, 38.8 ppm. IR (KBr): ν 3372, 3061, 2920, 2373, 1688, 1589, 1452, 1400, 1242, 1203, 1143, 1092, 1034, 991, 738, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₂ClNO₃ [M + Na]⁺, 478.1180; found, 478.1175. HPLC analysis: Chiralpak ID, *n*-hexane/CH₂Cl₂/MeOH = 50/49/1, flow rate 1.0 mL/min, $\lambda = 245$ nm, $t_{major} = 14.3$ min, $t_{minor} = 16.9$ min.

(R)-6-Benzyl-2-(2-(3,4-dichlorophenyl)-2-oxoethyl)-4-phenyl-5,6dihydropyrano[2,3-c]pyrrol-7(4H)-one (3t). Orange solid; 88% yield (86 mg); 89% ee; $[\alpha]_D^{20} = 29.0$; (c 1.0, CHCl₃); mp 61.1–63.4 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.05 (d, J = 2.0 Hz, 1H), 7.81 (dd, J = 8.4 Hz, J = 2.0 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.33-7.16 (m, 10H), 4.86 (d, J = 3.2 Hz, 1H), 4.80 (d, J = 15.2 Hz, 1H), 4.32 (d, J = 2.8 Hz, 1H), 4.29 (d, J = 15.2 Hz, 1H), 3.90 (d, J = 16.8 Hz, 1H), 3.85 (d, J = 17.2 Hz, 1H), 3.57 (d, J = 18.4 Hz, 1H), 3.37 (d, J = 18.4 Hz, 1H). ^{13}C NMR (100 MHz, CDCl₃): δ = 192.6, 163.7, 145.3, 142.6, 141.7, 137.9, 136.6, 135.6, 133.3, 130.8, 130.2, 128.8, 128.6, 127.9, 127.7, 127.6, 127.4, 127.4, 123.7, 104.2, 47.2, 46.2, 42.8, 38.8 ppm. IR (KBr): ν 3374, 3063, 3029, 2918, 2374, 1693, 1584, 1494, 1453, 1388, 1241, 1201, 1143, 1031, 1000, 735, 701 cm⁻¹. ESI-HRMS: calcd for C₂₈H₂₁Cl₂NO₃ [M + Na]⁺, 512.0791; found, 512.0785. HPLC analysis: Chiralpak ID, n-hexane/CH2Cl2/MeOH = 50/49/1, flow rate 1.0 mL/min, λ = 245 nm, t_{major} = 15.0 min, t_{minor} = 17.4 min.

ASSOCIATED CONTENT

S Supporting Information

HPLC chromatograms of 3, X-ray crystallographic data for 3a (CIF), and ¹H and ¹³C NMR spectra. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.5b00961.

AUTHOR INFORMATION

Corresponding Author

*E-mail: xupf@lzu.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the NSFC (21172097, 21202070, 21302075, and 21372105), the International S&T Cooperation Program of China (2013DFR70580), the National Natural Science Foundation from Gansu Province of China (no. 1204WCGA015), and the "111" program from MOE of P. R. China.

REFERENCES

 (1) (a) Atta-ur-Rahman; Nasreen, A.; Akhtar, F.; Shekhani, M. S.; Clardy, J.; Parvez, M.; Choudhary, M. I. J. Nat. Prod. **1997**, 60, 472.
 (b) Yang, W.; Shang, D.; Liu, Y.; Du, Y.; Feng, X. J. Org. Chem. **2005**, 70, 8533. (c) Smith, A. B.; Sperry, J. B.; Han, Q. J. Org. Chem. **2007**, 72, 6891. (d) Kumar, S.; Malachowski, W. P.; DuHadaway, J. B.; LaLonde, J. M.; Carroll, P. J.; Jaller, D.; Metz, R.; Prendergast, G. C.; Muller, A. J. J. Med. Chem. **2008**, *51*, 1706. (e) Yoo, N. H.; Jang, D. S.; Yoo, J. L.; Lee, Y. M.; Kim, Y. S.; Cho, J.-H.; Kim, J. S. J. Nat. Prod.

The Journal of Organic Chemistry

2008, 71, 713. (f) Xu, Z.; Li, Y.; Xiang, Q.; Pei, Z.; Liu, X.; Lu, B.; Chen, L.; Wang, G.; Pang, J.; Lin, Y. *J. Med. Chem.* **2010**, *53*, 4642. (2) For reviews, see: (a) Nicolaou, K. C.; Synder, S. A. *Classics in*

Total Synthesis; Wiley-VCH: Weinheim, Germany, 2003. (b) Yeung, K.-S.; Paterson, I. Chem. Rev. 2005, 105, 4237. (c) Kang, E. J.; Lee, E. Chem. Rev. 2005, 105, 4348. (d) Inoue, M. Chem. Rev. 2005, 105, 4379. (e) Aho, J. E.; Pihko, P. M.; Rissa, T. K. Chem. Rev. 2005, 105, 4406. (f) Nakata, T. Chem. Rev. 2005, 105, 4314. (g) Smith, A. B.; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008, 41, 675.

(3) For reviews, see: (a) Smith, A. B., III; Fox, R. J.; Razler, T. M. Acc. Chem. Res. 2008, 41, 675. (b) Clarke, P. A.; Santos, S. Eur. J. Org. Chem. 2006, 2045. (c) Larrosa, I.; Romea, P.; Urpi, F. Tetrahedron 2008, 64, 2683.

(4) (a) Greger, J. G.; Yoon-Miller, S. J. P.; Bechtold, N. R.; Flewelling, S. A.; Macdonald, J. P.; Downey, C. R.; Cohen, E. A.; Pelkey, E. T. *J. Org. Chem.* **2011**, *76*, 8203. (b) Boiadjiev, S. E.; Lightner, D. A. *J. Org. Chem.* **1998**, *63*, 6220. (c) Hosseini, M.; Kringelum, H.; Murray, A.; Tønder, J. E. Org. Lett. **2006**, *8*, 2103.

(5) (a) Feng, Z.-Q.; Chu, F.-M.; Guo, Z.-R.; Sun, P.-Y. Bioorg. Med. Chem. Lett. 2009, 19, 2270. (b) Bosch, J.; Roca, T.; Catena, J. L.; Liorens, O.; Pérez, J.-J.; Lagunas, C.; Fernández, A. G.; Miquel, I.; Fernández-Serratc, A.; Farrerons, C. Bioorg. Med. Chem. Lett. 2000, 10, 1745. (c) Peifer, C.; Selig, R.; Kinkel, K.; Ott, D.; Totzke, F.; Schächtele, C.; Heidenreich, R.; Röcken, M.; Schollmeyer, D.; Laufer, S. J. Med. Chem. 2008, 51, 3814.

(6) For reviews, see: (a) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res.
2001, 34, 535. (b) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035. (c) Ye, L.-W.; Zhou, J.; Tang, Y. Chem. Soc. Rev. 2008, 37, 1140. (d) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102. (e) Marinetti, A.; Voituriez, A. Synlett 2010, 174. (f) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005. (g) López, F.; Mascareñas, J. L. Chem.—Eur. J. 2011, 17, 418. (h) Zhao, Q.-Y.; Lian, Z.; Wei, Y.; Shi, M. Chem. Commun. 2012, 48, 1724. (i) Wang, Z.; Xu, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927.

(7) Zhang, C.; Lu, X. J. Org. Chem. 1995, 60, 2906.

(8) For examples, see: (a) Zhao, G.-L.; Huang, J.-W.; Shi, M. Org. Lett. 2003, 5, 4737. (b) Denis, J.-B.; Masson, G.; Retailleau, P.; Zhu, J. Angew. Chem., Int. Ed. 2011, 50, 5356. (c) Saunders, L. B.; Miller, S. J. ACS Catal. 2011, 1, 1347. (d) Wang, T.; Chen, X.-Y.; Ye, S. Tetrahedron Lett. 2011, 52, 5488. (e) Zhao, Q.-Y.; Huang, L.; Wei, Y.; Shi, M. Adv. Synth. Catal. 2012, 354, 1926. (f) Takizawa, S.; Arteaga, F. A.; Yoshida, Y.; Suzuki, M.; Sasai, H. Org. Lett. 2013, 15, 4142. (g) Selig, P.; Turčkin, A.; Raven, W. Chem. Commun. 2013, 49, 2930. (9) For examples, see: (a) Wang, X.; Fang, T.; Tong, X. Angew. Chem., Int. Ed. 2011, 50, 5361. (b) Ashtekar, K. D.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 5732. (c) Chen, X.-Y.; Wen, M.-W.; Ye, S.; Wang, Z.-X. Org. Lett. 2011, 13, 1138. (d) Pei, C.-K.; Shi, M. Tetrahedron: Asymmetry 2011, 22, 1239. (e) Pei, C.-K.; Jiang, Y.; Shi, M. Angew. Chem., Int. Ed. 2012, 51, 11328. (f) Pei, C.-K.; Jiang, Y.; Shi, M. Org. Biomol. Chem. 2012, 10, 4355. (g) Wang, F.; Luo, C.; Shen, Y.-Y.; Wang, Z.-D.; Li, X.; Cheng, J.-P. Org. Lett. 2015, 17, 338. (h) Gu, Y.; Li, F.; Hu, P.; Liao, D.; Tong, X. Org. Lett. 2015, 17, 1106.

(10) (a) Kumar, K.; Kapur, A.; Ishar, M. P. S. Org. Lett. 2000, 2, 787.
(b) Wallace, D. J.; Sidda, R. L.; Reamer, R. A. J. Org. Chem. 2007, 72, 1051. (c) Sampath, M.; Loh, T.-P. Chem. Commun. 2009, 45, 1568.
(d) Wallace, D. J.; Reamer, R. A. Tetrahedron Lett. 2013, 54, 4425.
(e) Wang, Q.; Yang, L.; Fan, X. Synlett 2014, 25, 687. (f) Cui, L.-Y.; Guo, S.-H.; Li, B.; Zhang, X.-Y.; Fan, X.-S. Chin. Chem. Lett. 2014, 25, 55. (g) Jia, Z.-J.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Chem. Commun. 2015, 51, 1054. (h) Yao, W.; Dou, X.; Lu, Y. J. Am. Chem. Soc. 2015, 137, 54.

(11) (a) Jia, Z.-X.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2011, 13, 832.
(b) Ling, J.-B.; Su, Y.; Zhu, H.-L.; Wang, G.-Y.; Xu, P.-F. Org. Lett. 2012, 14, 1090. (c) Zhao, S.; Lin, J.-B.; Zhao, Y.-Y.; Liang, Y.-M.; Xu, P.-F. Org. Lett. 2014, 16, 1802. (d) Zhao, Y.-L.; Wang, Y.; Cao, J.; Liang, Y.-M.; Xu, P.-F. Org. Lett. 2014, 16, 2438. (e) Lu, H.; Lin, J.-B.; Liu, J.-Y.; Xu, P.-F. Chem.—Eur. J. 2014, 20, 11659. (f) Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50,

2428. (g) Gao, T.-P.; Lin, J.-B.; Hu, X.-Q.; Xu, P.-F. Chem. Commun. 2014, 50, 8934.

(12) Chen, X.; Zhu, L.; Fang, L.; Yan, S.; Lin, J. RSC Adv. 2014, 4, 9926.

(13) CCDC 1053515 (3a) contains the supplementary crystallographic data for this note. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam. ac.uk/data request/cif.

(14) Huang, G.-T.; Lankau, T.; Yu, C.-H. J. Org. Chem. 2014, 79, 1700.

(15) France, S.; Wack, H.; Taggi, A. E.; Hafez, A. M.; Wagerle, T. R.; Shah, M. H.; Dusich, C. L.; Lectka, T. *J. Am. Chem. Soc.* **2004**, *126*, 4245.